來源:網絡資源 2020-09-28 10:03:42
因式分解速記口訣1
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
因式分解速記口訣2
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】一提(提公因式)二套(套公式)
因式分解速記口訣3
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對癥下藥穩又準,連乘結果是基礎。
因式分解中的四個注意事項:
①首項有負常提負,
②各項有“公”先提“公”,
③某項提出莫漏1,
④括號里面分到“底”。
現舉下例,可供參考。
例:
把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4
=-(a2-2ab+b2-4)
=-[(a-b)2-4]
=-(a-b+2)(a-b-2)
這里的“負”,指“負號”。
如果多項式的第一項是負的,一般要提出負號,使括號內第一項系數是正的;
這里的“公”指“公因式”。
如果多項式的各項含有公因式,那么先提取這個公因式,再進一步分解因式;
這里的“1”,是指多項式的某個整項是公因式時,先提出這個公因式后,括號內切勿漏掉1。
分解因式,必須進行到每一個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。
其中包含提公因式要一次性提“干凈”,不留“尾巴”,并使每一個括號內的多項式都不能再分解。
在沒有說明化到實數時,一般只化到有理數就夠了,有說明實數的話,一般就要化到實數!
由此看來,因式分解中的四個注意貫穿于因式分解的四種基本方法之中,與因式分解的四個步驟或說一般思考順序的四句話:“先看有無公因式,再看能否套公式,十字相乘試一試,分組分解要合適”等是一脈相承的。
點擊查看更多
點擊查看更多
點擊查看更多
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看